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Abstract. A review is given of how molecular dynamics methods have been modified to 
perform simulations in the constant-temperature condition. We usually consider a system 
which is thermally connected with a huge external system (a heat reservoir) to describe a 
canonical ensemble in statistical mechanics. The way in which this situation is reflected is a 
key factor for simulations under isothermal conditions. The total kinetic energy is kept to a 
constant value in constraint methods. In stochastic methods, interactions with a heat bath 
are treatedasrandomcollisionswith hypotheticalatomsor randomforcesactingonparticles. 
In the extended-system method, a degree of freedom which mimics a heat bath is introduced, 
and the total energy of a physical system is allowed to fluctuate. 

Molecular dynamics simulations are one of commonly used methods to study many- 
particle systems. Consider a classical system of N particles in a fixed volume. The 
movement of particles in this system is governed by the equations of motion of classical 
mechanics, i.e. Newton’s equations. 

mi  d2qi/dt2 = F ,  = -d@’/dqi 

where qi is a coordinate of particle i. We also express this equation in a canonical form 
using coordinate q, and momentump, for later use: 

We solve these equations numerically by the aid of computers and follow the trajectory 
of every particle in a system. Thermodynamical and structural properties are calculated 
from the trajectory thus obtained. In the classical mechanical sense, we can obtain all 
the information about a system. We can also obtain dynamical properties in molecular 
dynamics simulations, which is an advantage over the Monte Carlo method. 

The equations of motion conserve the total energy of a system. Thus, in molecular 
dynamics simulations, we can obtain properties of a system at a constant energy. A 
statistical mechanical ensemble corresponding to this situation is the microcanonical or 
constant-EVN ensemble, where E is the total energy, V is the volume and N is the 
number of particles in a system. These three quantities are controllable parameters in 
the microcanonical ensemble. 

In molecular dynamics simulations, we often encounter limitations and incon- 
veniences which come from the use of the microcanonical ensemble. Ordinary laboratory 
experiments are carried out at constant temperature and constant pressure, but mol- 
ecular dynamics simulations are done at constant energy and constant volume. The 
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difference in these conditions makes direct comparison with experiments difficult. 
Perhaps, the most inconvenient feature of the molecular dynamics method is that we 
cannot carry out simulations exactly at a specific temperature and pressure. This problem 
arises because we cannot obtain the temperature value until the simulations are finished. 
Usually. we relate the temperature T to the average of the kinetic energy: 

Only after we carry out simulations and calculate the average of the kinetic energy. d o  we 
know the temperature at which the simulations are carried out.  Constant-temperature 
molecular dynamics methods are developed to resolve this frustrating situation. 

We review how the temperature is controlled in the canonical ensemble. Consider a 
physical system surrounded by a large external system. The exchange of particles is not 
allowcd. but energy transfer is allowed between these two systems. The external system 
is very large in comparison with a physical system and is called a heat reservoir or  heat 
bath. The  temperature of this external system is fixed at T .  I n  fact. the temperature of 
our physical system in a thermodynamical sense is the temperature T of the external 
system. If we define an internal temperature by an average of the total kinetic energy in 
equation ( 3 ) ,  the temperature is maintained at a constant value by thermal contact with 
a heat bath. Several methods have been proposed to realize the constant-temperature 
condition in the molecular dynamics method. They are the constraint. stochastic and 
extended-system methods. The  way in which the thermal contact between a physical 
system and a heat bath is taken into consideration is a key factor in distinguishing 
between these methods. 

In the constraint method, the total kinetic energy is kept to a constant value. As a 
result of thermal contact with a heat bath. the total kinetic energy is almost maintained 
at an averaged value in the canonical ensemble. The kinetic energy should fluctuate in 
the canonical ensemble. but the relative deviation from an averaged value becomes very 
small in a large system (in the thermodynamic limit). Thus, we ignore the fluctuations 
of the total kinetic energy and keep i t  to a constant value. 

One  legitimate constraint method is now known as the Gaussian thermostat [ 1-31. 
It has been proved in this case that the equilibrium distribution function has a canonical 
form. The  equations of motion are modified as follows to satisfy the imposed constraint 
of a constant kinetic energy: 

d q l l d t  = P , / ~ ~ ~ ,  d p , l d t  = - d Q , ' / d q ,  - cpl = F ,  - Cpl. (4) 
A term similar to a friction term is added to the force. However. the coefficient < (which 
is a Lagrangian undetermined multiplier) is n o t  a constant and is determined to satisfy 
the constraint. We require that the equations of motion ( 3 )  should satisf!, 2 differential 
form of this constraint 

Then, the Lagrangian multiplier < becomes 

The equilibrium distribution function f ( p . q )  can be obtained hnalytically [4] as 
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The momentum part has a delta-function form, as expected because of imposition of a 
constraint, In coordinate space. the distribution function coincides with a canonical 
distribution. Thus.  we can obtain correct canonical ensemble averages in quantities 
which are a function of the coordinate only. 

The momentum-scaling dlgorithm, first proposed by Woodcock [ 5 ]  in 1971 is another 
constraint method. In this procedure, an estimate of velocity is scaled in every time step 
to keep the kinetic energy at a constant value. For a long time after its proposal. it was 
not clear whether we can obtain a canonical ensemble average with this algorithm. 
Only after the proposal of new constant-temperature methods, has an analysis of the 
momentum-scaling algorithm become possible. Now. this is considered as an approxi- 
mate algorithm to solve the Gaussian thermostat equations. assuming that the scaling 
procedure is carried out in every time step. 

In  the stochastic method. we consider the interaction between a physical system and 
a heat bath to be very complicated. and there is no way of knowing it in detail, but the 
effect of this thermal contact is random. A heat bath works as a source of random forces 
acting on particles. Schneider and Stoll [6] employed a fluctuation-dissipation theorem 
and added a Gaussian random force R ,  and a friction term - C q ,  to the force. Andersen 
considered the collisions o f  physical particles with hypothetical heat bath particles and 
changed the velocity of a particle to a randomly selected new velocity which follows a 
MaxLvell-Boltzmann distribution of temperature T .  Both methods can produce the 
equilibrium distribution function in the canonical ensemble. 

The extended-system method 18. 91 tries to mimic a situation which is written in a 
textbook on statistical mechanics. A physical system is connected to an external system. 
but in the extended- system method the external system consists of only one degree of 
freedom and not a huge system as we expect in a statistical mechanical treatment. The  
addition of an external system allows the total energy of a physical system to fluctuate. 

The extended-system method has been reformulated in a set of simple equations by 
Hoover [ 101. This approach is now called the Nos-Hoover  form. The equations of 
motion in this form are 

The  changes from Newton's equation are that a term similar to a friction term is added 
to the force in equation (8). and an equation which governs the change in the coefficient 
< is  given by equation (9). c i s  a variable related t o  the heat bath. A feedback mechanism 
works to keep the average of kinetic energy to a constant value. Assume that the kinetic 
energy is larger than the averaged value 3NkT .  In this case. > 0. Thus < increases. 
Even if < is negative. some time later p becomes positive. The equation of motion with 
positive < is equivalent to an equation with a frictional force, the velocity of particles 
decreases, and this continues until the kinetic energy becomes smaller than qNkT .  If the 
kinetic energy is smaller than j N k T ,  this mechanism increases the kinetic energy. 
Thus, the kinetic energy fluctuates around the averaged value, and the temperature is 
controlled to T .  
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If we introduce one  more variables by 

d( Ins) /d t=  < 
then 

becomes a conserved quantity. In this form, it is clear that an extended system consists 
of a physical system (first two terms) and an external system which mimics a heat bath. 
These two systems are  coupled via the friction term in equation (8). 

I t  can be proved that the equilibrium distribution function has a canonical form 
starting from a generalized Liouville equation in a phase space r = (p, q,  <) [ l o ,  111 .  
The distribution functionf(p, q,  <) expresses a probability that trajectories pass through 
a phase space point (p, q. <). The generalized Liouville equation states that the prob- 
ability should be conserved. 

a f /a t  + (a/ar) - (rf) = 0. (12)  
The first term is a change inside a volume element, and the second term expresses the 
change passing through the surface of a volume element. I f  we define a time derivative 
along a phase space trajectory by 

d l d t  = d / d t  + r * d / d T  

q / d t  = - [ ( d / t r )  r l f .  (13)  

then equation (12) can be re-expressed as 

In  ordinary mechanics. the right-hand side of the above equation is zero, and this means 
that the equilibrium distribution function does not change. In  our case. ( d / d r )  * f is 
equal to 3N<f. I f  we define a function 

the time derivative of HT is 

Thus. the generalized Liouville equation reduces to 

d f / d t =  - ( l / k T )  (dH,ldt)f. 

A solution of this equation is easily obtained and is 

f ( p ,  q ,  <) = c exp( - H T / k T )  

which has a canonical distribution form. 
Finally, I would like to  comment on recent developments in constant-temperature 

methods. The formulation of Nose-Hoover-type [ 10, 111 methods is quite general in 
comparison with the original formulation based on a Hamiltonian [8. 91. In a simple case 
in which the kinetic energy of all the particles are controlled uniformly by one variable 
<, the two formulations are completely equivalent. However. the method based on a 
Hamiltonian is very hard to extend to the multiple-< case. In the Nose-Hoover form, 
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there is no problem in introducing many for separate groups of coordinates or to limit 
temperature control to some regions. 

A general extension of the Nose-Hoover equations is given in [12]. From this 
extension, the essence of the Nose-Hoover equations becomes clear. Consider two 
quantities. The ratio of averages in the canonical ensemble of these two quantities is kT.  
If one sets the derivative of the friction coefficient 5 equal to the difference in these two 
quantities, the canonical distribution is realized. As a special case, they also give an 
important extension [13] of the Nose-Hoover thermostat to a system which does not 
have a kinetic energy term. The classical Heisenberg spin system is a typical example. 
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